YOU CAN SEE THE BASIC CONCEPTS OF TECHNOLOGY, HISTORY OF TECHNOLOGY AND MORE INTERESTING INFORMATION ABOUT ELECTRICITY AND POWER GENERATION

Wednesday, May 20, 2009

TECHNOLOGY


Technology is a broad concept that deals with an animal species' usage and knowledge of tools and crafts, and how it affects an animal species' ability to control and adapt to its environment. Technology is a term with origins in the Greek "technologia", "τεχνολογία" — "techne", "τέχνη" ("craft") and "logia", "λογία" ("saying"). [1] However, a strict definition is elusive; "technology" can refer to material objects of use to humanity, such as machines, hardware or utensils, but can also encompass broader themes, including systems, methods of organization, and techniques. The term can either be applied generally or to specific areas: examples include "construction technology", "medical technology", or "state-of-the-art technology".
The human race's use of technology began with the conversion of natural resources into simple tools. The prehistorical discovery of the ability to control fire increased the available sources of food and the invention of the wheel helped humans in travelling in and controlling their environment. Recent technological developments, including the printing press, the telephone, and the Internet, have lessened physical barriers to communication and allowed humans to interact freely on a global scale. However, not all technology has been used for peaceful purposes; the development of weapons of ever-increasing destructive power has progressed throughout history, from clubs to nuclear weapons.
Technology has affected society and its surroundings in a number of ways. In many societies, technology has helped develop more advanced economies (including today's global economy) and has allowed the rise of a leisure class. Many technological processes produce unwanted by-products, known as pollution, and deplete natural resources, to the detriment of the Earth and its environment. Various implementations of technology influence the values of a society and new technology often raises new ethical questions. Examples include the rise of the notion of efficiency in terms of human productivity, a term originally applied only to machines, and the challenge of traditional norms.
Philosophical debates have arisen over the present and future use of technology in society, with disagreements over whether technology improves the human condition or worsens it. Neo-Luddism, anarcho-primitivism, and similar movements criticise the pervasiveness of technology in the modern world, claiming that it harms the environment and alienates people; proponents of ideologies such as transhumanism and techno-progressivism view continued technological progress as beneficial to society and the human condition. Indeed, until recently, it was believed that the development of technology was restricted only to human beings, but recent scientific studies indicate that other primates and certain dolphin communities have developed simple tools and learned to pass their knowledge to other generations.

See More

Science, engineering and technology


The distinction between science, engineering and technology is not always clear. Science is the reasoned investigation or study of phenomena, aimed at discovering enduring principles among elements of the phenomenal world by employing formal techniques such as the scientific method. [8] Technologies are not usually exclusively products of science, because they have to satisfy requirements such as utility, usability and safety.
Engineering is the goal-oriented process of designing and making tools and systems to exploit natural phenomena for practical human means, often (but not always) using results and techniques from science. The development of technology may draw upon many fields of knowledge, including scientific, engineering, mathematical, linguistic, and historical knowledge, to achieve some practical result.
Technology is often a consequence of science and engineering — although technology as a human activity precedes the two fields. For example, science might study the flow of electrons in electrical conductors, by using already-existing tools and knowledge. This new-found knowledge may then be used by engineers to create new tools and machines, such as semiconductors, computers, and other forms of advanced technology. In this sense, scientists and engineers may both be considered technologists; the three fields are often considered as one for the purposes of research and reference. [9]
The exact relations between science and technology in particular have been debated by scientists, historians, and policymakers in the late 20th century, in part because the debate can inform the funding of basic and applied science. In immediate wake of World War II, for example, in the United States it was widely considered that technology was simply "applied science" and that to fund basic science was to reap technological results in due time. An articulation of this philosophy could be found explicitly in Vannevar Bush's treatise on postwar science policy, Science—The Endless Frontier: "New products, new industries, and more jobs require continuous additions to knowledge of the laws of nature... This essential new knowledge can be obtained only through basic scientific research." In the late-1960s, however, this view came under direct attack, leading towards initiatives to fund science for specific tasks (initiatives resisted by the scientific community). The issue remains contentious—though most analysts resist the model that technology simply is a result of scientific research.

for more detail

The Scope of Technology

It seems that more and more, the term "technology" is used to refer only to computer technology. For our class, examples of computer technology are very appropriate, but please feel free to expand that notion of technology to include a wider variety, such as: medical technologies; military technologies; agricultural technologies; historical and futuristic (even science-fiction) technologies; material processing technologies; and household technologies

Levels of Technology

There is a personal level, which is distinct from, say, a corporate level, a national level, or a global level. But they are related; how a nation uses petroleum is clearly related to how an individual uses petroleum, but different strategies are often required to both study and effect changes at these levels.
There may be a tendency in our class to look at "using technology" at the level of the individual, and "technology assessment" at a corporate, regional, national, or international level. But this need not be the case.
Let's just be clear about what we mean. If you are using technology to refer to a piece high-tech hospital equipment and I use it to refer to my computer, and someone else uses it to refer to the global referring to global transportation infrastructure, then communication could be a problem

Modeling Technology



There are many other ways to divide up technological actions. For twenty years the International Technology Education Association promoted dividing it into Manufacturing, Construction, Communication, and Transportation. Or we could look at technology as a type of processing, dividing into Information Processing, Energy Processing, and Material Processing. As a materials science teacher, I commonly use Procurement, Transformation, Utilization, and Disposition as organizers for the study of material-related technologies.
But one problem common to traditional views of technology is a lack of attention to the interconnectedness within and extending outside of a system. For example, one typical model that is used to represent any dynamic system has sometimes been called the Universal Systems Model (what an arrogant title.) It involves Input, Process, and Output (IPO), with feedback that flows in the opposite direction. But there is no connection to other systems, and the IPO model is linear, with starting and ending points. That just doesn't seem realistic.
For example, to build a guitar, we need 3 board feet (I'm guessing) of Brazilian Rosewood, among other things. Typical processes are sawing, gluing, and finishing. The outputs include the guitar and wood chips. But this model has no way to look at where the rosewood came from, or if it should have been harvested in the first place. It doesn't look at the history the precedes inputs, nor the consequences that may be distant. Is one of the outputs of Indiana's coal-fired generators dead fish in New York? I wouldn't say so, but I would call it one of the impacts.
But typically, we are more concerned with process than with implications or impacts. Learning a process might be a short-term need, and we may not have the guts to take a broader view.
Stephen Petrina, at the University of British Columbia, adapted a catch phrase on his web site related to technology: "Think globally, act locally" was the phrase, adapted to "Think globally, act globally, think locally, act locally."

Issues Concerning the Use of Technology

The study of "using technology" includes historical methods, clinical experiments, surveys of users or potential users, the usability testing of products, the design of environments and devices to promote "userfriendliness," and a host of other areas.

Typical questions one might raise concerning use are:

  • Is this the best product for the task?
  • How do we help people learn how to use this technology?
  • Does it fit the human body?
  • Should we use this technology?
  • What technologies can be used to meet special needs?
  • How durable is the technology?
  • How can this item be redesigned to improve usability?
  • Is the technology supported sufficiently (by technical backing, not by cast iron legs)?
  • Is the technology cost effective?
  • What is the break even period for this technological adoption?
  • What are user's beliefs about this technology?
  • What are the psychological factors involved in the human interface?
  • What are the assumptions and implications of this technological adoption?

Issues related to Technology Assessment

Whenever anyone makes a judgment about a technology, that may be called a technology assessment. In the literature, especially that generated by the US Office of Technology Assessment, the term relates to a group of types of studies that look at technological options and policy issues.
Typically, a formal technology assessment is commissioned prior to a government's or corporation's decision to choose one technological path over another. Thus, it is the aim of the team of specialists preparing the technology assessment to objectively present a short list of realistic options or alternate decisions, and to spell out their best predictions about the consequences of each option.
An environmental impact statement may be a type of technology assessment, but there are many other types as well. Technology assessments can use a variety of tools, including benefit/cost analysis, trend extrapolation, opinion measurement, simulation models, and many others.
But even the most informal technology assessment may well be concerned with collecting information, analyzing the information, developing a list of possible scenarios, forecasting, and weighing technological tradeoffs. A company that uses pneumatic and hydraulic robot may wish to commission a technology assessment or feasibility study on the upgrade to servo robots. Before lawmakers enact legislation, they often use the report of a technology assessment. On the personal level, a car buyer carefully scrutinizes a variety of choices, and often uses the same decision-making as in formal technology assessments.
The purpose of technology assessment is to objectively inform a technological decision so as to minimize unwanted outcomes and maximize desired outcomes.

Electricity


Electricity (from the New Latin ēlectricus, "amber-like"[a]) is a general term that encompasses a variety of phenomena resulting from the presence and flow of electric charge. These include many easily recognizable phenomena such as lightning and static electricity, but in addition, less familiar concepts such as the electromagnetic field and electromagnetic induction.
In general usage, the word 'electricity' is adequate to refer to a number of physical effects. However, in scientific usage, the term is vague, and these related, but distinct, concepts are better identified by more precise terms:
Electric charge – a property of some subatomic particles, which determines their electromagnetic interactions. Electrically charged matter is influenced by, and produces, electromagnetic fields.
Electric current – a movement or flow of electrically charged particles, typically measured in amperes.
Electric field – an influence produced by an electric charge on other charges in its vicinity.
Electric potential – the capacity of an electric field to do work on a electric charge, typically measured in volts.
Electromagnetism – a fundamental interaction between the magnetic field and the presence and motion of an electric charge.
Electrical phenomena have been studied since antiquity, though advances in the science were not made until the seventeenth and eighteenth centuries. Practical applications for electricity however remained few, and it would not be until the late nineteenth century that engineers were able to put it to industrial and residential use. The rapid expansion in electrical technology at this time transformed industry and society. Electricity's extraordinary versatility as a source of energy means it can be put to an almost limitless set of applications which include transport, heating, lighting, communications, and computation. The backbone of modern industrial society is, and for the foreseeable future can be expected to remain, the use of electrical power

CONCEPTS

Electric Charge

Electric charge is a property of certain subatomic particles, which gives rise to and interacts with, the electromagnetic force, one of the four fundamental forces of nature. Charge originates in the atom, in which its most familiar carriers are the electron and proton. It is a conserved quantity, that is, the net charge within an isolated system will always remain constant regardless of any changes taking place within that system.[15] Within the system, charge may be transferred between bodies, either by direct contact, or by passing along a conducting material, such as a wire.[16] The informal term static electricity refers to the net presence (or 'imbalance') of charge on a body, usually caused when dissimilar materials are rubbed together, transferring charge from one to the other.

Charge on a gold-leaf electroscope causes the leaves to visibly repel each other
The presence of charge gives rise to the electromagnetic force: charges exert a force on each other, an effect that was known, though not understood, in antiquity.[17] A lightweight ball suspended from a string can be charged by touching it with a glass rod that has itself been charged by rubbing with a cloth. If a similar ball is charged by the same glass rod, it is found to repel the first: the charge acts to force the two balls apart. Two balls that are charged with a rubbed amber rod also repel each other. However, if one ball is charged by the glass rod, and the other by an amber rod, the two balls are found to attract each other. These phenomena were investigated in the late eighteenth century by Charles-Augustin de Coulomb, who deduced that charge manifests itself in two opposing forms. This discovery led to the well-known axiom: like-charged objects repel and opposite-charged objects attract.[17]
The force acts on the charged particles themselves, hence charge has a tendency to spread itself as evenly as possible over a conducting surface. The magnitude of the electromagnetic force, whether attractive or repulsive, is given by Coulomb's law, which relates the force to the product of the charges and has an inverse-square relation to the distance between them.[18][19] The electromagnetic force is very strong, second only in strength to the strong interaction,[20] but unlike that force it operates over all distances.[21] In comparison with the much weaker gravitational force, the electromagnetic force pushing two electrons apart is 1042 times that of the gravitational attraction pulling them together.[22]
The charge on electrons and protons is opposite in sign, hence an amount of charge may be expressed as being either negative or positive. By convention, the charge carried by electrons is deemed negative, and that by protons positive, a custom that originated with the work of Benjamin Franklin.[23] The amount of charge is usually given the symbol Q and expressed in coulombs;[24] each electron carries the same charge of approximately −1.6022×10−19 coulomb. The proton has a charge that is equal and opposite, and thus +1.6022×10−19 coulomb. Charge is possessed not just by matter, but also by antimatter, each antiparticle bearing an equal and opposite charge to its corresponding particle.[25]
Charge can be measured by a number of means, an early instrument being the gold-leaf electroscope, which although still in use for classroom demonstrations, has been superseded by the electronic electrometer.procedures, and the invention of new devices and equipment to aid those with health problems, physical disabilities, and sensory impairments, the latter third of the 20th century has borne witness to a very dramatic evolution. The current perspective is a broad one in which six types of technology are recognized: the technology of teaching, instructional technology, assistive technology, medical technology, technology productivity tools, and information technology (Blackhurst & Edyburn, 2000).

Electric current


The movement of electric charge is known as an electric current, the intensity of which is usually measured in amperes. Current can consist of any moving charged particles; most commonly these are electrons, but any charge in motion constitutes a current.
By historical convention, a positive current is defined as having the same direction of flow as any positive charge it contains, or to flow from the most positive part of a circuit to the most negative part. Current defined in this manner is called conventional current. The motion of negatively-charged electrons around an electric circuit, one of the most familiar forms of current, is thus deemed positive in the opposite direction to that of the electrons.[26] However, depending on the conditions, an electric current can consist of a flow of charged particles in either direction, or even in both directions at once. The positive-to-negative convention is widely used to simplify this situation.

An electric arc provides an energetic demonstration of electric current
The process by which electric current passes through a material is termed electrical conduction, and its nature varies with that of the charged particles and the material through which they are travelling. Examples of electric currents include metallic conduction, where electrons flow through a conductor such as metal, and electrolysis, where ions (charged atoms) flow through liquids. While the particles themselves can move quite slowly, sometimes with an average drift velocity only fractions of a millimetre per second,[16] the electric field that drives them itself propagates at close to the speed of light, enabling electrical signals to pass rapidly along wires.[27]
Current causes several observable effects, which historically were the means of recognising its presence. That water could be decomposed by the current from a voltaic pile was discovered by Nicholson and Carlisle in 1800, a process now known as electrolysis. Their work was greatly expanded upon by Michael Faraday in 1833.[28] Current through a resistance causes localised heating, an effect James Prescott Joule studied mathematically in 1840.[28] One of the most important discoveries relating to current was made accidentally by Hans Christian Ørsted in 1820, when, while preparing a lecture, he witnessed the current in a wire disturbing the needle of a magnetic compass.[29] He had discovered electromagnetism, a fundamental interaction between electricity and magnetics.
In engineering or household applications, current is often described as being either direct current (DC) or alternating current (AC). These terms refer to how the current varies in time. Direct current, as produced by example from a battery and required by most electronic devices, is a unidirectional flow from the positive part of a circuit to the negative.[30] If, as is most common, this flow is carried by electrons, they will be travelling in the opposite direction. Alternating current is any current that reverses direction repeatedly; almost always this takes the form of a sinusoidal wave.[31] Alternating current thus pulses back and forth within a conductor without the charge moving any net distance over time. The time-averaged value of an alternating current is zero, but it delivers energy in first one direction, and then the reverse. Alternating current is affected by electrical properties that are not observed under steady state direct current, such as inductance and capacitance.[32] These properties however can become important when circuitry is subjected to transients, such as when first energised

Electric field


The concept of the electric field was introduced by Michael Faraday. An electric field is created by a charged body in the space that surrounds it, and results in a force exerted on any other charges placed within the field. The electric field acts between two charges in a similar manner to the way that the gravitational field acts between two masses, and like it, extends towards infinity and shows an inverse square relationship with distance.[21] However, there is an important difference. Gravity always acts in attraction, drawing two masses together, while the electric field can result in either attraction or repulsion. Since large bodies such as planets generally carry no net charge, the electric field at a distance is usually zero. Thus gravity is the dominant force at distance in the universe, despite being much weaker.[22]

Field lines emanating from a positive charge above a plane conductor
An electric field generally varies in space,[33] and its strength at any one point is defined as the force (per unit charge) that would be felt by a stationary, negligible charge if placed at that point.[34] The conceptual charge, termed a 'test charge', must be vanishingly small to prevent its own electric field disturbing the main field and must also be stationary to prevent the effect of magnetic fields. As the electric field is defined in terms of force, and force is a vector, so it follows that an electric field is also a vector, having both magnitude and direction. Specifically, it is a vector field.[34]
The study of electric fields created by stationary charges is called electrostatics. The field may be visualised by a set of imaginary lines whose direction at any point is the same as that of the field. This concept was introduced by Faraday,[35] whose term 'lines of force' still sometimes sees use. The field lines are the paths that a point positive charge would seek to make as it was forced to move within the field; they are however an imaginary concept with no physical existence, and the field permeates all the intervening space between the lines.[35] Field lines emanating from stationary charges have several key properties: first, that they originate at positive charges and terminate at negative charges; second, that they must enter any good conductor at right angles, and third, that they may never cross nor close in on themselves.[36]
A hollow conducting body carries all its charge on its outer surface. The field is therefore zero at all places inside the body.[37] This is the operating principal of the Faraday cage, a conducting metal shell which isolates its interior from outside electrical effects.
The principles of electrostatics are important when designing items of high-voltage equipment. There is a finite limit to the electric field strength that may be withstood by any medium. Beyond this point, electrical breakdown occurs and an electric arc causes flashover between the charged parts. Air, for example, tends to arc across small gaps at electric field strengths which exceed 30 kV per centimetre. Over larger gaps, its breakdown strength is weaker, perhaps 1 kV per centimetre.[38] The most visible natural occurrence of this is lightning, caused when charge becomes separated in the clouds by rising columns of air, and raises the electric field in the air to greater than it can withstand. The voltage of a large lightning cloud may be as high as 100 MV and have discharge energies as great as 250 kWh.[39]
The field strength is greatly affected by nearby conducting objects, and it is particularly intense when it is forced to curve around sharply pointed objects. This principle is exploited in the lightning conductor, the sharp spike of which acts to encourage the lightning stroke to develop there, rather than to the building it serves to protect
Electric potential

The concept of electric potential is closely linked to that of the electric field. A small charge placed within an electric field experiences a force, and to have brought that charge to that point against the force requires work. The electric potential at any point is defined as the energy required to bring a unit test charge from an infinite distance slowly to that point. It is usually measured in volts, and one volt is the potential for which one joule of work must be expended to bring a charge of one coulomb from infinity.[41] This definition of potential, while formal, has little practical application, and a more useful concept is that of electric potential difference, and is the energy required to move a unit charge between two specified points. An electric field has the special property that it is conservative, which means that the path taken by the test charge is irrelevant: all paths between two specified points expend the same energy, and thus a unique value for potential difference may be stated.[41] The volt is so strongly identified as the unit of choice for measurement and description of electric potential difference that the term voltage sees greater everyday usage.
For practical purposes, it is useful to define a common reference point to which potentials may be expressed and compared. While this could be at infinity, a much more useful reference is the Earth itself, which is assumed to be at the same potential everywhere. This reference point naturally takes the name earth or ground. Earth is assumed to be an infinite source of equal amounts of positive and negative charge, and is therefore electrically uncharged – and unchargeable.[42]
Electric potential is a scalar quantity, that is, it has only magnitude and not direction. It may be viewed as analogous to height: just as a released object will fall through a difference in heights caused by a gravitational field, so a charge will 'fall' across the voltage caused by an electric field.[43] As relief maps show contour lines marking points of equal height, a set of lines marking points of equal potential (known as equipotentials) may be drawn around an electrostatically charged object. The equipotentials cross all lines of force at right angles. They must also lie parallel to the object's surface, otherwise this would produce a force on the charge carriers and the field would fail to be static.
The electric field was formally defined as the force exerted per unit charge, but the concept of potential allows for a more useful and equivalent definition: the electric field is the local gradient of the electric potential. Usually expressed in volts per metre, the vector direction of the field is the line of greatest gradient of potential, and where the equipotentials lie closest together



An electric circuit is an interconnection of electric components, usually to perform some useful task, with a return path to enable the charge to return to its source.
The components in an electric circuit can take many forms, which can include elements such as resistors, capacitors, switches, transformers and electronics. Electronic circuits contain active components, usually semiconductors, and typically exhibit non-linear behavior, requiring complex analysis. The simplest electric components are those that are termed passive and linear: while they may temporarily store energy, they contain no sources of it, and exhibit linear responses to stimuli.[48]
The resistor is perhaps the simplest of passive circuit elements: as its name suggests, it resists the current through it, dissipating its energy as heat. The resistance is a consequence of the motion of charge through a conductor: in metals, for example, resistance is primarily due to collisions between electrons and ions. Ohm's law is a basic law of circuit theory, stating that the current passing through a resistance is directly proportional to the potential difference across it. The resistance of most materials is relatively constant over a range of temperatures and currents; materials under these conditions are known as 'ohmic'. The ohm, the unit of resistance, was named in honour of Georg Ohm, and is symbolised by the Greek letter Ω. 1 Ω is the resistance that will produce a potential difference of one volt in response to a current of one amp.[48]
The capacitor is a device capable of storing charge, and thereby storing electrical energy in the resulting field. Conceptually, it consists of two conducting plates separated by a thin insulating layer; in practice, thin metal foils are coiled together, increasing the surface area per unit volume and therefore the capacitance. The unit of capacitance is the farad, named after Michael Faraday, and given the symbol F: one farad is the capacitance that develops a potential difference of one volt when it stores a charge of one coulomb. A capacitor connected to a voltage supply initially causes a current as it accumulates charge; this current will however decay in time as the capacitor fills, eventually falling to zero. A capacitor will therefore not permit a steady state current, but instead blocks it.[48]
The inductor is a conductor, usually a coil of wire, that stores energy in a magnetic field in response to the current through it. When the current changes, the magnetic field does too, inducing a voltage between the ends of the conductor. The induced voltage is proportional to the time rate of change of the current. The constant of proportionality is termed the inductance. The unit of inductance is the henry, named after Joseph Henry, a contemporary of Faraday. One henry is the inductance that will induce a potential difference of one volt if the current through it changes at a rate of one ampere per second.[48] The inductor's behaviour is in some regards converse to that of the capacitor: it will freely allow an unchanging current, but opposes a rapidly changing one

Power Generation


A power station (also referred to as a generating station, power plant, or powerhouse) is an industrial facility for the generation of electric power.[1][2][3]
Power plant is also used to refer to the engine in ships, aircraft and other large vehicles. Some prefer to use the term energy center because it more accurately describes what the plants do, which is the conversion of other forms of energy, like chemical energy, gravitational potential energy or heat energy into electrical energy. However, power plant is the most common term in the U.S., while elsewhere power station and power plant are both widely used, power station prevailing in many Commonwealth countries and especially in the United Kingdom.
At the center of nearly all power stations is a generator, a rotating machine that converts mechanical energy into electrical energy by creating relative motion between a magnetic field and a conductor. The energy source harnessed to turn the generator varies widely. It depends chiefly on which fuels are easily available and on the types of technology that the power company has access to.

Thermal Power Plants



A thermal power station is a power plant in which the prime mover is steam driven. Water is heated, turns into steam and spins a steam turbine which either drives an electrical generator or does some other work, like ship propulsion. After it passes through the turbine, the steam is condensed in a condenser and recycled to where it was heated; this is known as a Rankine cycle. The greatest variation in the design of thermal power stations is due to the different fuel sources. Some prefer to use the term energy center because such facilities convert forms of heat energy into electrical energy.

Efficiency

Power is energy per time. The power output or capacity of an electric plant can be expressed in units of megawatts electric (MWe). The electric efficiency of a conventional thermal power station, considered as saleable energy (in MWe) produced at the plant busbars as a percent of the heating value of the fuel consumed, is typically 33% to 48% efficient. This efficiency is limited as all heat engines are governed by the laws of thermodynamics (See: Carnot cycle). The rest of the energy must leave the plant in the form of heat. This waste heat can go through a condenser and be disposed of with cooling water or in cooling towers. If the waste heat is instead utilized for e.g. district heating, it is called cogeneration. An important class of thermal power station are associated with desalination facilities; these are typically found in desert countries with large supplies of natural gas and in these plants, freshwater production and electricity are equally important co-products.
Since the efficiency of the plant is fundamentally limited by the ratio of the absolute temperatures of the steam at turbine input and output, efficiency improvements require use of higher temperature, and therefore higher pressure, steam. Historically, other working fluids such as mercury have been experimentally used in a mercury vapour turbine power plant, since these can attain higher temperatures than water at lower working pressures. However, the obvious hazards of toxicity, and poor heat transfer properties, have ruled out mercury as a working fluid.

Diagram Of a Typical Coal-Fired Thermal Power Plants


Steam Generation


In fossil-fueled power plants, steam generator refers to a furnace that burns the fossil fuel to boil water to generate steam. In the nuclear plant field, steam generator refers to a specific type of large heat exchanger used in a pressurized water reactor (PWR) to thermally connect the primary (reactor plant) and secondary (steam plant) systems, which of course is used to generate steam. In a nuclear reactor called a boiling water reactor (BWR), water in boiled to generate steam directly in the reactor itself and there are no units called steam generators. In some industrial settings, there can also be steam-producing heat exchangers called heat recovery steam generators (HRSG) which utilize heat from some industrial process. The steam generating boiler has to produce steam at the high purity, pressure and temperature required for the steam turbine that drives the electrical generator. A fossil fuel steam generator includes an economizer, a steam drum, and the furnace with its steam generating tubes and superheater coils. Necessary safety valves are located at suitable points to avoid excessive boiler pressure. The air and flue gas path equipment include: forced draft (FD) fan, air preheater (APH), boiler furnace, induced draft (ID) fan, fly ash collectors (electrostatic precipitator or baghouse) and the flue gas stack.[1][2][3]
Geothermal plants need no boiler since they use naturally occurring steam sources. Heat exchangers may be used where the geothermal steam is very corrosive or contains excessive suspended solids. Nuclear plants also boil water to raise steam, either directly generating steam from the reactor (BWR) or else using an intermediate heat exchanger (PWR).
For units over about 200 MW capacity, redundancy of key components is provided by installing duplicates of the FD fan, APH, fly ash collectors and ID fan with isolating dampers. On some units of about 60 MW, two boilers per unit may instead be provided.

Boiler Furnace And Steam Drum


Once water inside the boiler or steam generator, the process of adding the latent heat of vaporization or enthalpy is underway. The boiler transfers energy to the water by the chemical reaction of burning some type of fuel.
The water enters the boiler through a section in the convection pass called the economizer. From the economizer it passes to the steam drum. Once the water enters the steam drum it goes down the downcomers to the lower inlet waterwall headers. From the inlet headers the water rises through the waterwalls and is eventually turned into steam due to the heat being generated by the burners located on the front and rear waterwalls (typically). As the water is turned into steam/vapor in the waterwalls, the steam/vapor once again enters the steam drum. The steam/vapor is passed through a series of steam and water separators and then dryers inside the steam drum. The steam separators and dryers remove water droplets from the steam and the cycle through the waterwalls is repeated. This process is known as natural circulation.
The boiler furnace auxiliary equipment includes coal feed nozzles and igniter guns, soot blowers, water lancing and observation ports (in the furnace walls) for observation of the furnace interior. Furnace explosions due to any accumulation of combustible gases after a trip-out are avoided by flushing out such gases from the combustion zone before igniting the coal.
The steam drum (as well as the superheater coils and headers) have air vents and drains needed for initial startup. The steam drum has internal devices that removes moisture from the wet steam entering the drum from the steam generating tubes. The dry steam then flows into the superheater coils

Steam Turbine-Driven Electric Generator


The steam turbine-driven generators have auxiliary systems enabling them to work satisfactorily and safely. The steam turbine generator being rotating equipment generally has a heavy, large diameter shaft. The shaft therefore requires not only supports but also has to be kept in position while running. To minimise the frictional resistance to the rotation, the shaft has a number of bearings. The bearing shells, in which the shaft rotates, are lined with a low friction material like Babbitt metal. Oil lubrication is provided to further reduce the friction between shaft and bearing surface and to limit the heat generated.

Barring Gear

Barring gear (or "turning gear") is the mechanism provided to rotate the turbine generator shaft at a very low speed after unit stoppages. Once the unit is "tripped" (i.e., the steam inlet valve is closed), the turbine coasts down towards standstill. When it stops completely, there is a tendency for the turbine shaft to deflect or bend if allowed to remain in one position too long. This is because the heat inside the turbine casing tends to concentrate in the top half of the casing, making the top half portion of the shaft hotter than the bottom half. The shaft therefore could warp or bend by millionths of inches.
This small shaft deflection, only detectable by eccentricity meters, would be enough to cause damaging vibrations to the entire steam turbine generator unit when it is restarted. The shaft is therefore automatically turned at low speed (about one revolution per minute) by the barring gear until it has cooled sufficiently to permit a complete stop.

Condenser


The surface condenser is a shell and tube heat exchanger in which cooling water is circulated through the tubes.[2][6][7][8] The exhaust steam from the low pressure turbine enters the shell where it is cooled and converted to condensate (water) by flowing over the tubes as shown in the adjacent diagram. Such condensers use steam ejectors or rotary motor-driven exhausters for continuous removal of air and gases from the steam side to maintain vacuum.
For best efficiency, the temperature in the condenser must be kept as low as practical in order to achieve the lowest possible pressure in the condensing steam. Since the condenser temperature can almost always be kept significantly below 100 oC where the vapor pressure of water is much less than atmospheric pressure, the condenser generally works under vacuum. Thus leaks of non-condensible air into the closed loop must be prevented. Plants operating in hot climates may have to reduce output if their source of condenser cooling water becomes warmer; unfortunately this usually coincides with periods of high electrical demand for air conditioning.
The condenser generally uses either circulating cooling water from a cooling tower to reject waste heat to the atmosphere, or once-through water from a river, lake or ocean.

Feedwater Heater


In the case of a conventional steam-electric power plant utilizing a drum boiler, the surface condenser removes the latent heat of vaporization from the steam as it changes states from vapour to liquid. The heat content (btu) in the steam is referred to as Enthalpy. The condensate pump then pumps the condensate water through a feedwater heater. The feedwater heating equipment then raises the temperature of the water by utilizing extraction steam from various stages of the turbine.[2][3]
Preheating the feedwater reduces the irreversibilities involved in steam generation and therefore improves the thermodynamic efficiency of the system.[9] This reduces plant operating costs and also helps to avoid thermal shock to the boiler metal when the feedwater is introduced back into the steam cycle.

Deaerator


A steam generating boiler requires that the boiler feed water should be devoid of air and other dissolved gases, particularly corrosive ones, in order to avoid corrosion of the metal.
Generally, power stations use a deaerator to provide for the removal of air and other dissolved gases from the boiler feedwater. A deaerator typically includes a vertical, domed deaeration section mounted on top of a horizontal cylindrical vessel which serves as the deaerated boiler feedwater storage tank.[2][3][10]
There are many different designs for a deaerator and the designs will vary from one manufacturer to another. The adjacent diagram depicts a typical conventional trayed deaerator.[10][11] If operated properly, most deaerator manufacturers will guarantee that oxygen in the deaerated water will not exceed 7 ppb by weight (0.005 cm³/L)

Superheater


As the steam is conditioned by the drying equipment inside the drum, it is piped from the upper drum area into an elaborate set up of tubing in different areas of the boiler. The areas known as superheater and reheater. The steam vapor picks up energy and its temperature is now superheated above the saturation temperature. The superheated steam is then piped through the main steam lines to the valves of the high pressure turbine.

Development

Applications of mechanical engineering are found in the records of many ancient and medieval societies throughout the globe. In ancient Greece, the works of Archimedes (287 BC–212 BC) and Heron of Alexandria (c. 10–70 AD) deeply influenced mechanics in the Western tradition. In China, Zhang Heng (78–139 AD) improved a water clock and invented a seismometer, and Ma Jun (200–265 AD) invented a chariot with differential gears. The medieval Chinese horologist and engineer Su Song (1020–1101 AD) incorporated an escapement mechanism into his astronomical clock tower two centuries before any escapement could be found in clocks of medieval Europe, as well as the world's first known endless power-transmitting chain drive.[1]

During the years from 7th to 15th century, the era called the Islamic golden age, there have been remarkable contributions from Muslims in the field of mechanical technology, Al Jaziri, who was one of them wrote his famous "Book of Knowledge of Ingenious Mechanical Devices" in 1206 presented many mechanical designs. He is also considered to be the inventor of such mechanical devices which now form the very basic of mechanisms, such as crank and cam shafts.

During the early 19th century in England and Scotland, the development of machine tools led mechanical engineering to develop as a separate field within engineering, providing manufacturing machines and the engines to power them.[2] The first British professional society of mechanical engineers was formed in 1847, thirty years after civil engineers formed the first such professional society.[3] In the United States, the American Society of Mechanical Engineers (ASME) was formed in 1880, becoming the third such professional engineering society, after the American Society of Civil Engineers (1852) and the American Institute of Mining Engineers (1871).[4] The first schools in the United States to offer an engineering education were the United States Military Academy in 1817, an institution now known as Norwich University in 1819, and Rensselaer Polytechnic Institute in 1825. Education in mechanical engineering has historically been based on a strong foundation in mathematics and science.[5]

The field of mechanical engineering is considered among the broadest of engineering disciplines. The work of mechanical engineering ranges from the ocean bottoms to space.

Modern tools

Many mechanical engineering companies, especially those in industrialized nations, have begun to incorporate computer-aided engineering (CAE) programs into their existing design and analysis processes, including 2D and 3D solid modeling computer-aided design (CAD). This method has many benefits, including easier and more exhaustive visualization of products, the ability to create virtual assemblies of parts, and the ease of use in designing mating interfaces and tolerances.

Other CAE programs commonly used by mechanical engineers include product lifecycle management (PLM) tools and analysis tools used to perform complex simulations. Analysis tools may be used to predict product response to expected loads, including fatigue life and manufacturability. These tools include finite element analysis (FEA), computational fluid dynamics (CFD), and computer-aided manufacturing (CAM).

Using CAE programs, a mechanical design team can quickly and cheaply iterate the design process to develop a product that better meets cost, performance, and other constraints. No physical prototype need be created until the design nears completion, allowing hundreds or thousands of designs to be evaluated, instead of a relative few. In addition, CAE analysis programs can model complicated physical phenomena which cannot be solved by hand, such as viscoelasticity, complex contact between mating parts, or non-Newtonian flows

As mechanical engineering begins to merge with other disciplines, as seen in mechatronics, multidisciplinary design optimization (MDO) is being used with other CAE programs to automate and improve the iterative design process. MDO tools wrap around existing CAE processes, allowing product evaluation to continue even after the analyst goes home for the day. They also utilize sophisticated optimization algorithms to more intelligently explore possible designs, often finding better, innovative solutions to difficult multidisciplinary design problems.

Mechanics

Mechanics is, in the most general sense, the study of forces and their effect upon matter. Typically, engineering mechanics is used to analyze and predict the acceleration and deformation (both elastic and plastic) of objects under known forces (also called loads) or stresses. Subdisciplines of mechanics include

Mechanical engineers typically use mechanics in the design or analysis phases of engineering. If the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. Dynamics might be used when designing the car's engine, to evaluate the forces in the pistons and cams as the engine cycles. Mechanics of materials might be used to choose appropriate materials for the frame and engine. Fluid mechanics might be used to design a ventilation system for the vehicle (see HVAC), or to design the intake system for the engine.